4,484 research outputs found

    Effect of Loss on Multiplexed Single-Photon Sources

    Full text link
    An on-demand single-photon source is a key requirement for scaling many optical quantum technologies. A promising approach to realize an on-demand single-photon source is to multiplex an array of heralded single-photon sources using an active optical switching network. However, the performance of multiplexed sources is degraded by photon loss in the optical components and the non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a general multiplexed single-photon source with lossy components and derive expressions for the output probabilities of single-photon emission and multi-photon contamination. We apply these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate the multiplexed sources when used for many-photon state generation under various amounts of component loss. We find that with a multiplexed source composed of switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of efficiently producing 20-40 photon states with low multi-photon contamination is possible, offering the possibility of unlocking new classes of experiments and technologies.Comment: Journal versio

    Hard limits on the postselectability of optical graph states

    Get PDF
    Coherent control of large entangled graph states enables a wide variety of quantum information processing tasks, including error-corrected quantum computation. The linear optical approach offers excellent control and coherence, but today most photon sources and entangling gates---required for the construction of large graph states---are probabilistic and rely on postselection. In this work, we provide proofs and heuristics to aid experimental design using postselection. We derive a fundamental limitation on the generation of photonic qubit states using postselected entangling gates: experiments which contain a cycle of postselected gates cannot be postselected. Further, we analyse experiments that use photons from postselected photon pair sources, and lower bound the number of classes of graph state entanglement that are accessible in the non-degenerate case---graph state entanglement classes that contain a tree are are always accessible. Numerical investigation up to 9-qubits shows that the proportion of graph states that are accessible using postselection diminishes rapidly. We provide tables showing which classes are accessible for a variety of up to nine qubit resource states and sources. We also use our methods to evaluate near-term multi-photon experiments, and provide our algorithms for doing so.Comment: Our manuscript comprises 4843 words, 6 figures, 1 table, 47 references, and a supplementary material of 1741 words, 2 figures, 1 table, and a Mathematica code listin

    Integrated Silicon Photonics for High-Speed Quantum Key Distribution

    Get PDF
    Integrated photonics offers great potential for quantum communication devices in terms of complexity, robustness and scalability. Silicon photonics in particular is a leading platform for quantum photonic technologies, with further benefits of miniaturisation, cost-effective device manufacture and compatibility with CMOS microelectronics. However, effective techniques for high-speed modulation of quantum states in standard silicon photonic platforms have been limited. Here we overcome this limitation and demonstrate high-speed low-error quantum key distribution modulation with silicon photonic devices combining slow thermo-optic DC biases and fast (10~GHz bandwidth) carrier-depletion modulation. The ability to scale up these integrated circuits and incorporate microelectronics opens the way to new and advanced integrated quantum communication technologies and larger adoption of quantum-secured communications

    Mid-infrared quantum optics in silicon

    Full text link
    Applied quantum optics stands to revolutionise many aspects of information technology, provided performance can be maintained when scaled up. Silicon quantum photonics satisfies the scaling requirements of miniaturisation and manufacturability, but at 1.55 μ\mum it suffers from unacceptable linear and nonlinear loss. Here we show that, by translating silicon quantum photonics to the mid-infrared, a new quantum optics platform is created which can simultaneously maximise manufacturability and miniaturisation, while minimising loss. We demonstrate the necessary platform components: photon-pair generation, single-photon detection, and high-visibility quantum interference, all at wavelengths beyond 2 μ\mum. Across various regimes, we observe a maximum net coincidence rate of 448 ±\pm 12 Hz, a coincidence-to-accidental ratio of 25.7 ±\pm 1.1, and, a net two photon quantum interference visibility of 0.993 ±\pm 0.017. Mid-infrared silicon quantum photonics will bring new quantum applications within reach.Comment: 8 pages, 4 figures; revised figures, updated discussion in section 3, typos corrected, added referenc
    • …
    corecore